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Dimensionality reduction
// Principle

I Reduce effect of curse of dimensionality

I High-dimensional structured data→ low-dimensional

feature vectors
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Dimensionality reduction
// Standard algorithms

I PCA

I NMF

I T-sne

Advantage

good mathematical interpretation
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Dimensionality reduction
// Auto-encoders
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Dimensionality reduction
// InfoGan
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Adversarial approach
// F-divergence and distance

I KL-divergence

KL(P,Q) =

∫
P(x)log(

P(x)

Q(x)
)dµx

I Jensen-Shannon divergence

JS(P,Q)) = KL(P,Q) + KL(Q,P)

I Wasserstein distance

W (P,Q) = inf
γ∈Π(P,Q)

E
x,y∼γ

‖ x − y ‖

Computation

Can be estimated through the optimization of a neural network
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Adversarial approach
// Mutual information

I Mutual information : Quantifies the dependence of two

random variables

I(X ,Z) = D(PXZ ||PX ⊗ PZ)

Dimensionality reduction

Find Z a low-dimensional representation of X that maximizes

I(X ,Z)
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Adversarial approach
// Disentangled representation

I Disentangled representation : feature vectors that encode
complementary information
I Example : separate colors and number in an

low-dimensional feature vector
I Semi-supervised
I Algorithm based on adversarial maximization and

minimization of mutual information between the different
representations
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Disentangled representation
// Toy example
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Disentangled representation
// Sentinel 2 example
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Dimensionality reduction
// Conclusions

I Adversarial approach
I Can deal with structured high-dimensional data
I Interpretation in terms of mutual information
I Disentangled representation
I Successful application in satellite image analysis

I Limits :
I Adversarial

optimization can
be difficult
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