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How Machine Learning could go possibly wrong ?

Decisions are taken based on machine learning algorithms (most often black

box models)

Used for recommendation systems, insurance, banks, human ressources,

education, communication ... but also areas justice, medicine, police, political

decisions ....

Learning Sample : (Y1,X1), . . . , (Yn,Xn) with distribution P learnt from

empirical version Pn

Parameter of interest :

f ? ∈ argminEP{`(Y , f (X )) + penalty(f )}

Decision Rule

f̂n ∈ argminPn
˜̀(Y , f (X )) = argmin

1

n

n∑
i=1

{`(Yi , f (Xi )) + penalty(f )}

Optimised from a mathematical point of view and generalized for all new

observations

Ŷ = f̂n(X )
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How Machine Learning could go possibly wrong ?

AI generalizes the situation encountered in the learning sample to the

whole population.

It shapes the reality according to the learnt rule without questioning nor

evolution.

The density from world of the data may not represent the real world.

The observations reflect use but they may be different from the ideal

model we desire.

Presence of Bias in the data set.

Acceptability of AI requires that the algorithm behaves in a fair way for all

people.

But the learning sample may be biased or not reflect the desired behavior

of the model
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Examples

1 Adult Income Data.

Data from a bank : Forecast from characteristics if someone has the

potential to have a high income (≥ 50k$) to grant a loan.

Variables : Age, Workclass, Final weight, Education, Marital status,

Occupation, Relationship, Gender, Race, Capital gain, Capital loss, Hours

per week, Native country.

Output Y ∈ {0, 1} if predicted income is higher than the threshold or not.

Protected Variables : Gender, Race, Native country.

Result :

P(Ŷ = 1|S = 1) >> P(Ŷ = 1|S = 0).

2 ProPublica vs Northpoint

3 Bias in learning sample in image
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Examples

1 Adult Income Data.

2 ProPublica vs Northpoint

Northpoint produces a score COMPAS to measure the probability of

recidivism of offendants. This score has been designed using Machine

Learning Algorithm from a learning sample to predict if someone will

commit a crime when set free Y = 0.

Variables : characteristics of people and their crime

Protected Variable : Ethnic Origin S = 0 coding Afro-American.

It is balanced

P(Ŷ = 1|S = 1) ∼ P(Ŷ = 1|S = 0).

But the errors are different

P(Ŷ = 1|S = 1,Y = 0) >> P(Ŷ = 1|S = 0,Y = 0).

3 Bias in learning sample in image
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Examples

1 Adult Income Data.
2 ProPublica vs Northpoint
3 Bias in learning sample in image

S is snow in the background (using Lime package from ”Why Should I

Trust You?”: Explaining the Predictions of Any Classifier (2016))

S is the color of colorized Mnist 4



Examples

1 Adult Income Data.

2 ProPublica vs Northpoint

3 Bias in learning sample in image

Removing the S variable is not enough since the X are highly correlated with S .

Machine Learning Algorithm amplifies the bias and transforms the correlation

into a causal relationship.
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Mathematical Model for Fairness

- Y target

- X : Ω→ Rd , d > 1, visible attributes

- S : Ω→ {0, 1} which induces a bias protected attribute

S =

{
0 minority (unfavored)

1 majority (favored)

(pictures from Loubes, Pauwels, Serrurier (2019))

Fairness deals with the relationships between Y , Ŷ and S

5



Mathematical Model for Fairness

- Y target

- X : Ω→ Rd , d > 1, visible attributes

- S : Ω→ {0, 1} which induces a bias protected attribute

S =

{
0 minority (unfavored)

1 majority (favored)

(pictures from Loubes, Pauwels, Serrurier (2019))

Fairness deals with the relationships between Y , Ŷ and S
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Measuring Bias in Machine Learning

- Y =

{
0 failure

1 success
target class

Criteria of bias or unfairness

• Disparate Impact

DI (g ,X , S) =
P(g(X ) = 1 | S = 0)

P(g(X ) = 1 | S = 1)

→ g is said not to have Disparate Impact at level τ ∈ (0, 1] if DI (g ,X , S) > τ

• Balanced Error Rate

BER(g ,X , S) =
P (g(X ) = 0 | S = 1) + P (g(X ) = 1 | S = 0)

2

→ Given ε > 0,S is not ε−predictable from X if BER(g ,X , S) > ε

• New Criterion based on Distance between distributions of each class driven

by S . Wasserstein distance and Optimal Transport
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Monge-Kantorovich a.k.a Wasserstein distance

Consider the set W2(Rd ) of probabilities with finite second moment

For any µ, ν ∈ W2(Rd ), Π(µ, ν) the set of all probability measures π over the

product set Rd × Rd with first (resp. second) marginal µ (resp. ν)

The Wasserstein distance of second order is defined as

W 2
2 (µ, ν) = inf

π∈Π(µ,ν)

∫
‖x − y‖2 dπ(x , y) = min

X∼µ, Y∼ν
E
(
‖X − Y ‖2

)
.

The Wasserstein Variation with respect to weights ωj , j = 1, . . . , J:

V2 (µ1, . . . , µJ ) = inf
η∈W2(Rd )

 J∑
j=1

ωj W
2
2 (µj , η)

1/2

=

 J∑
j=1

ωj W
2
2 (µj , µB )

1/2

µB : Wasserstein barycenter (Agueh & Carlier (2015), Le Gouic &

Loubes (2017), Del Barrio & Loubes (2018) )
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Application to a real data example: Adult Income data

Y ={
1 income exceeds $ 50.000/year

0 otherwise

X =(age, education number, capital gain,

capital loss, worked hours/ week)

S = gender

{
0 female

1 male

P. Besse, E. del Barrio, P. Gordaliza and J.-M. Loubes

(2018). Confidence intervals for testing disparate impact

in fair learning. arXiv

↓
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Achieving Fairness

Different strategies to ensure Fairness : independency w.r.t to S

Finding Classifiers g such that µ0(g) := L(g(X )|S = 0) is close to

µ1(g) := L(g(X )|S = 1) by adding a penalty

Modify the input data ⇒ to break the relationship with the protected

attribute

Changing the data X into X̃

such that µ0 := L(X̃ |S = 0) is close to µ1 := L(X̃ |S = 1) to gain fairness

of all possible classifiers constructed using X̃ .

Quantify accurately the modification of the distributions : trade-off between

fairness and accuracy to the observations in order to provide a certification for

generalization of the model
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Achieving Statistical Parity (Proceedings ICML 2019)

Goal:

X −→ X̃ such that L
(

X̃ | S = 0
)

= L
(

X̃ | S = 1
)

L
(

g(X̃ ) | S = 0
)

= L
(

g(X̃ ) | S = 1
)
, ∀g ∈ G

⇒ DI (g , X̃ , S) = 1

Methodology:
TS : Rd −→ Rd

X 7−→ X̃ = TS (X )
s.t.

L (T0(X ) | S = 0) = L (T1(X ) | S = 1)

TS depends on the binary random variable S

µ0 ∼ X | S = 0
µ1 ∼ X | S = 1

ν = µS ◦ T−1
S

1 Best choice for the distribution ν of the repaired variable?

⇒ Wasserstein barycenter proposed in Fair Learning litterature

2 Optimal way of transporting µ1 and µ0 to this new distribution ν?

⇒ Optimal Transport Maps
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Controlling the loss of information in the new classification

Amount of information lost when replacing X by X̃ ?

• Risk when the full data (X ,S) is available

R(g ,X ,S) := P(g(X , S) 6= Y ) 99K RB (X , S) = inf
g

R(g ,X ,S) = R(gB ,X ,S)

• In the repaired data X̃ = TS (X )

R(h, X̃ ) := P(h(X̃ ) 6= Y ) 99K RB (X̃ )

E(X̃ ) := RB (X̃ )− RB (X , S)

Theorem (Upper bound for cost for fairness)

For each s ∈ {0, 1}, assume that the function ηs (x) = P(Y = 1 | X = x ,S = s)

is Lipschitz with constant Ks > 0. Then, if K = max{K0,K1},

E(X̃ ) ≤ 2
√

2K

(∑
s=0,1

πs W 2
2 (µs , µs ]Ts )

) 1
2

.
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Conclusion(s)

Fairness constraints enable either to increase the accuracy of the forecast

by removing learning sample unwanted bias

... or shape a fair reality

And provides a control on the generalization power of Machine Learning

algorithms (certification).

Challenge : definition of bias in sample

Automatic detection of unknown bias and detection of areas with bias

New methods with DEEL partners : fair clustering, ressource allocation,

PCA, auto-encoders, GAN, online algorithms ...

Related Fields : Transfert Learning and Domain Generalization
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