THALES

On the Role of Trust and Explanation for Al Adoption in Industry.

May 16th, 2019

Freddy Lecue
Chief Al Scientist, CortAlx, Thales, Montreal - Canada
Inria, Sophia Antipolis - France

@freddylecue
https://tinyurl.com/freddylecue

Context

Gary Chavez added a photo you might ... be in.

about a minute ago · 👪

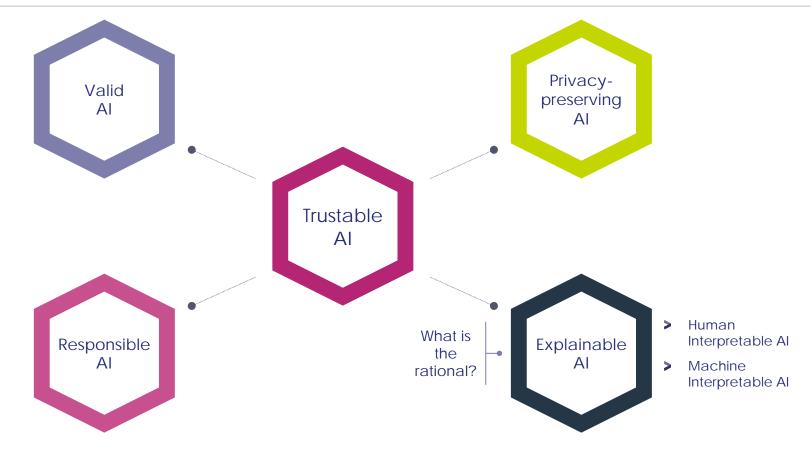
Markets we serve

Aerospace

Space

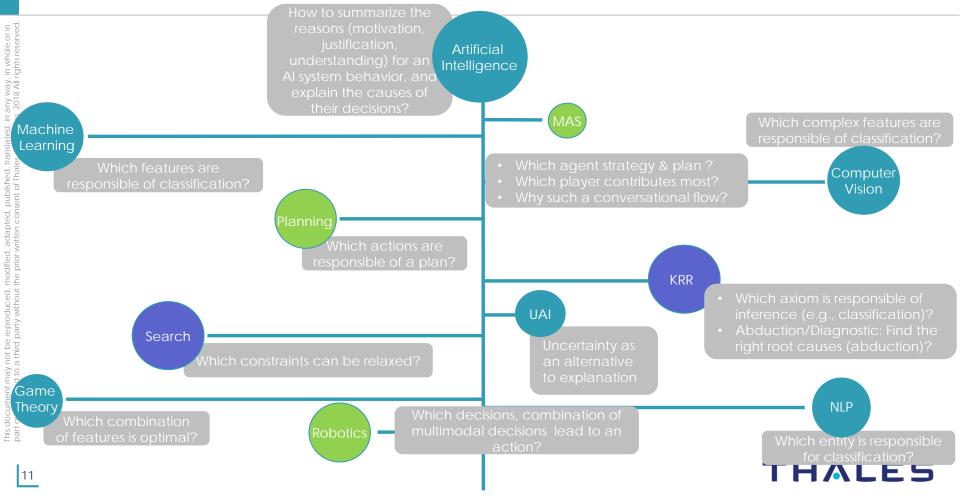
Ground Transportation

Defence


Security

Trusted Partner For A Safer World

Trustable Al



XAI in AI

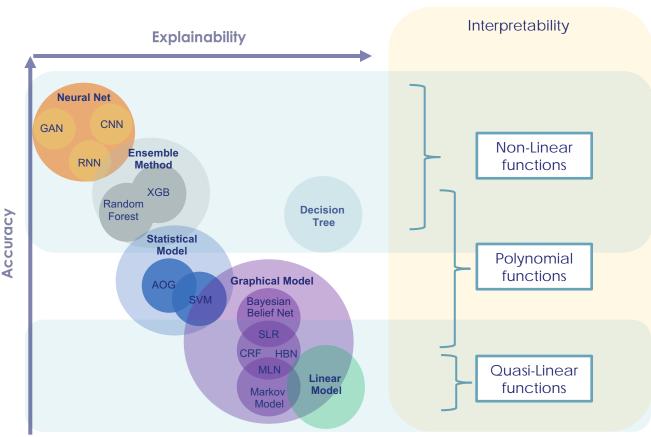
XAI: One Objective, Many 'AI's, Many Definitions, Many Approaches

XAI in Machine Learning

How to Explain? Accuracy vs. Explanability

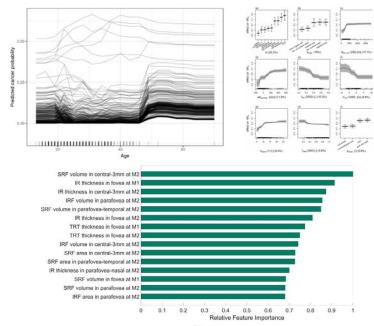
Learning

Challenges:

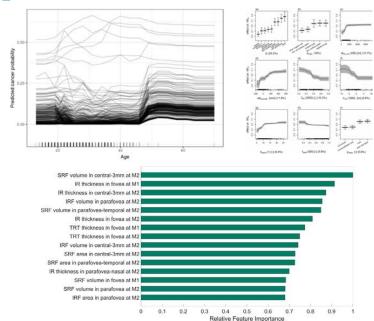

- Supervised
- Unsupervised learning

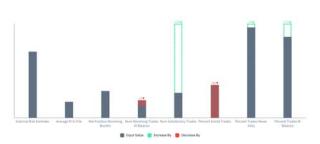
Approach:

- Representation Learning
- Stochastic selection


Output:

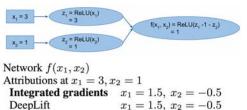
- Correlation
- No causation

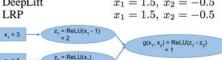

Machine Learning (except Artificial Neural Network)


Feature Importance (a)
Partial Dependence Plot
Individual Conditional Expectation
Sensitivity Analysis

Machine Learning (except Artificial Neural Network)

Feature Importance (a)
Partial Dependence Plot
Individual Conditional Expectation
Sensitivity Analysis


Counterfactual What-if


Brent D. Mittelstadt, Chris Russell, Sandra Wachter: Explaining Explanations in Al. FAT 2019: 279-288

Rory Mc Grath, Luca Costabello, Chan Le Van, Paul Sweeney, Farbod Kamiab, Zhao Shen, Freddy Lécué: Interpretable Credit Application Predictions With Counterfactual Explanations. CoRR abs/1811.05245 (2018)

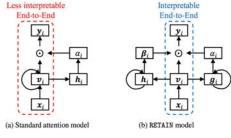
Machine Learning (only Artificial Neural Network)

Network $g(x_1, x_2)$

Attributions at $x_1 = 3$, $x_2 = 1$ **Integrated gradients** $x_1 = 1.5$, $x_2 = -0.5$

DeepLift $x_1 = 2, x_2 = -1$ LRP $x_1 = 2, x_2 = -1$

Attribution for Deep


Network (Integrated gradient-based)

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In ICML, pp. 3319–3328, 2017.

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje: Learning Important Features Through Propagating Activation

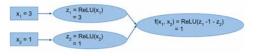
16 ifferences. ICML 2017: 3145-3153

Attention Mechanism

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations, 2015

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, Walter F. Stewart: RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism. NIPS 2016: 3504-3512

transformed

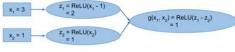

encoder

network

network

 $(g \circ f)(x)$

Machine Learning (only Artificial Neural Network)



Network $f(x_1, x_2)$

Attributions at $x_1 = 3, x_2 = 1$

Integrated gradients $x_1 = 1.5, x_2 = -0.5$ DeepLift $x_1 = 1.5, x_2 = -0.5$

LRP $x_1 = 1.5, x_2 = -0.5$

Network $g(x_1, x_2)$

Attributions at $x_1 = 3, x_2 = 1$

Integrated gradients $x_1 = 1.5, x_2 = -0.5$ DeepLift $x_1 = 2, x_2 = -1$

LRP $x_1 = 2, x_2 = -1$

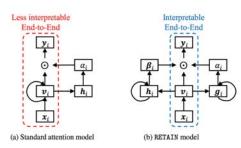
Attribution for Deep

Network (Integrated gradient-based)

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In ICML, pp. 3319-3328, 2017.

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje: Learning Important Features Through Propagating Activation 10 ifferences. ICML 2017: 3145-3153

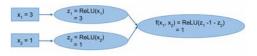
Attention Mechanism


7 ttorition Modrianisi

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations, 2015

prototype classifier network h fully-connected softmax Reverse Ti

Auto-encoder


Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-Based Reasoning Through Prototypes: A Neural Network That Explains Its Predictions. AAAI 2018: 3530-3537

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, Walter F. Stewart: RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism. NIPS 2016: 3504-3512

Machine Learning (only Artificial Neural Network)

Network $f(x_1, x_2)$

Attributions at $x_1 = 3, x_2 = 1$

 Integrated gradients
 $x_1 = 1.5, x_2 = -0.5$

 DeepLift
 $x_1 = 1.5, x_2 = -0.5$

 LRP
 $x_1 = 1.5, x_2 = -0.5$

 $x_1 = 3 \longrightarrow \begin{cases} z_1 = \text{ReLU}(x_1 - 1) \\ = 2 \end{cases}$ $y_2 = 1 \longrightarrow \begin{cases} z_2 = \text{ReLU}(x_2) \\ = 1 \end{cases}$ $y_3 = 1 \longrightarrow \begin{cases} z_2 = \text{ReLU}(x_2) \\ = 1 \end{cases}$

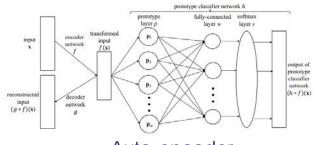
Network $g(x_1, x_2)$

Attributions at $x_1 = 3, x_2 = 1$

Integrated gradients $x_1 = 1.5, x_2 = -0.5$ DeepLift $x_1 = 2, x_2 = -1$

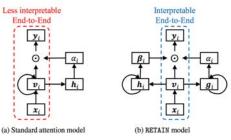
LRP $x_1 = 2, x_2 = -1$ $x_1 = 2, x_2 = -1$

Attribution for Deep

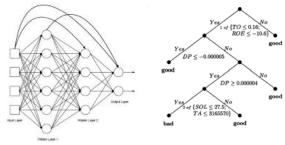

Network (Integrated gradient-based)

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In ICML, pp. 3319–3328, 2017.

Avanti Shrikumar, Peyton Greenside, Anshul Kundaje: Learning Important Features Through Propagating Activation 16 ifferences. ICML 2017: 3145-3153


Attention Mechanism

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. International Conference on Learning Representations, 2015



Auto-encoder

Oscar Li, Hao Liu, Chaofan Chen, Cynthia Rudin: Deep Learning for Case-Based Reasoning Through Prototypes: A Neural Network That Explains Its Predictions. AAAI 2018: 3530-3537

Edward Choi, Mohammad Taha Bahadori, Jimeng Sun, Joshua Kulas, Andy Schuetz, Walter F. Stewart: RETAIN: An Interpretable Predictive Model for Healthcare using Reverse Time Attention Mechanism. NIPS 2016: 3504-3512

Surogate Model

Mark Craven, Jude W. Shavlik: Extracting Tree-Structured Representations of Trained Networks. NIPS 1995: 24-30

Airplane

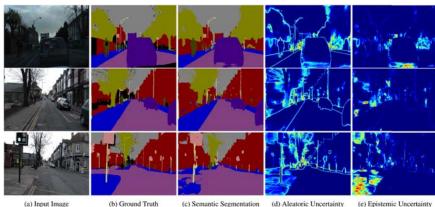
Computer Vision

Interpretable Units

res5c unit 1243
res5c unit 1379
inception_4e unit 92

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba: Network Dissection: Quantifying Interpretability of Deep Visual Representations. CVPR 2017: 3319-3327

Computer Vision

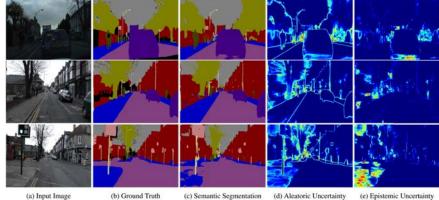


Interpretable Units

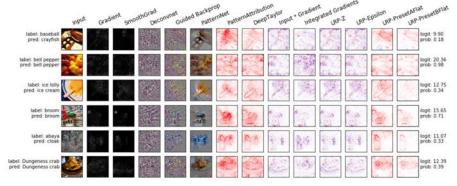
Airplane

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba: Network Dissection: Quantifying Interpretability of Deep Visual Representations. CVPR 2017: 3319-3327

Uncertainty Map


Computer Vision

Interpretable Units


res5c unit 1243 res5c unit 1379 inception_4e unit 92

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba: Network Dissection: Quantifying Interpretability of Deep Visual Representations. CVPR 2017: 3319-3327

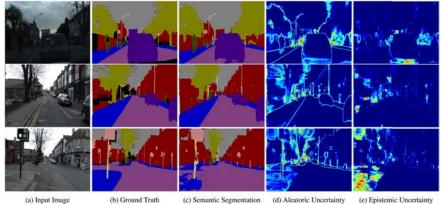
Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian ²¹Deep Learning for Computer Vision? NIPS 2017: 5580-5590

Saliency Map

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, Been Kim: Sanity Checks for Saliency Ivi ps Ne url 2018: \$1220-600

Airplane


Computer Vision

Interpretable Units

res5c unit 1243
res5c unit 1379
inception_4e unit 92

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, Antonio Torralba: Network Dissection: Quantifying Interpretability of Deep Visual Representations. CVPR 2017: 3319-3327

Uncertainty Map

Alex Kendall, Yarin Gal: What Uncertainties Do We Need in Bayesian ²²Deep Learning for Computer Vision? NIPS 2017: 5580-5590

Western Gre

Description: This is a large bird with a white neck and a black back in the water.

Class Definition: The Western Grebe is a waterbird with a yellow pointy beak, white neck and belly

and black back. Explanation: Th

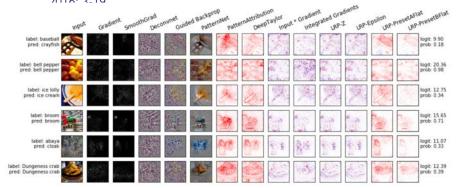
Explanation: This is a Western Grebe because this bird has a long white neck, pointy yellow beak and red eye.

Description: This is a large flying bird with black wings and a white belly.

Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back

Visual Explanation: This is a Laysan Albatross because this bird has a large wingspan, hooked yellow beak, and white belly.

Laysan Albatross Description: This is a large bird with a white neck and a black back in the water.

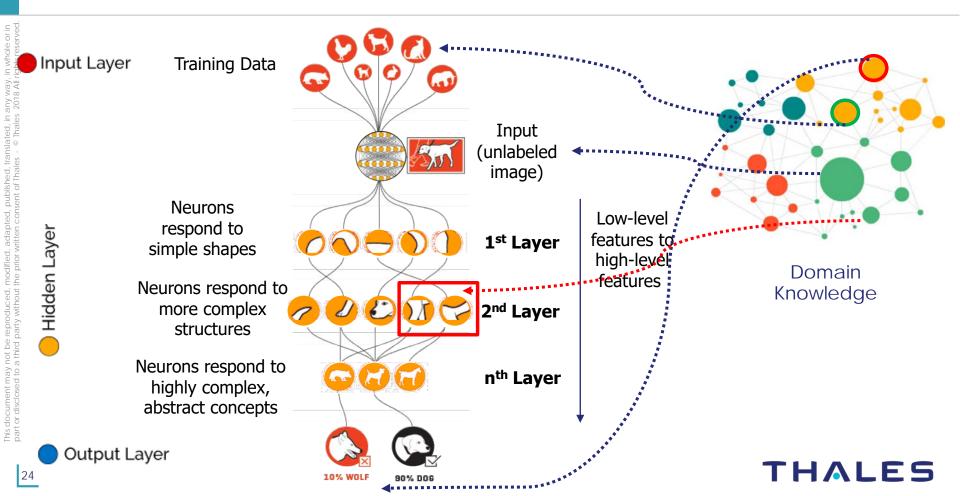

Class Definition: This is a large bird with a writte neck and a black back in the water.

Class Definition: The Laysan Albatross is a large seabird with a hooked yellow beak, black back and white belly.

Visual Explanation: This is a Laysan Albatross because this bird has a hooked yellow beak white neck and black back.

Visual Explanation

Lisa Anne Hendricks, Zeynep Akata, Marcus Rohrbach, Jeff Donahue, Bernt Schiele, Trevor Darrell: Generating Visual Explanations. ECCV (4) 2016: 3.10



Saliency Map

Julius Adebayo, Justin Gilmer, Michael Muelly, Ian J. Goodfellow, Moritz Hardt, Been Kim: Sanity Checks for Saliency Ivi ps Ne url 2018: 9 200-6

XAI MUST-HAVE in INDUSTRY

XAI Must-Have in Industry: On Neural Network Architecture

XAI Must-Have in Industry: On Outputs

Description 0: Two trains

XAI Must-Have in Industry: On Outputs

Description 0: Two trains

Description 1: This is a train accident including a orange train

Description 2: This is an train accident between two speed merchant trains of characteristics X43-B and Y33-C in a dry environment

Description 3: This is a public transportation accident

XAI Must-Have in Industry: On Evaluation

- Not a new problem a reformulation of past research challenges in Al
- Explainable AI is motivated by real-world applications in AI
- Explainable AI is a strong requirement for adoption of AI in industry
- Lots of approaches for eXplainable Machine Learning... but no semantics attached
- Need more work on joint learning and reasoning systems
- In AI (in general): many interesting / complementary approaches

Research and Technology Applied AI (Artificial Intelligence) Scientist

Wherever safety and Security are Critical, Thales o build smarter solutions. Everywhere.

protecting the national security interests of count

Established in 1972, Thales Canada has over 1,800 Toronto and Vancouver working in Defence, Avior

This is a unique opportunity to play a key role on Technology (TRT) in Canada (Quebec and Montre applied R&T experts at five locations worldwide. intelligence technologies. Our passion is imagining cutting edge AI technologies. Not only will you joi network, but this TRT is also co-located within Co-Intelligence expertise) i.e., the new flagship progr to work.

Job Description

An AI (Artificial Intelligence) Research and Techno developing innovative prototypes to demonstrate intelligence. To be successful in this role, one mos what's new, and a strong ability to learn new tech hand-on technical skills and be familiar with latest will contribute as technical subject matter experts and its business units. In addition to the impleme preferred Qualifications individual will also be involved in the initial project thinking, and team work is also critical for this role

As a Research and Technology Applied AI Scientist paced projects.

Professional Skill Requirements

Good foundation in mathematics, statistic

MAY 7TH, 2019

Freddy Lecue Chief Al Scientist, CortAlx, Thales, Montreal - Canada

@freddylecue https://tinyurl.com/freddylecue Freddy.lecue.e@thalesdigital.jo

- · Strong knowledge of Machine Learning foundations
- Strong development skills with Machine Learning frameworks e.g., Scikit-learn, Tensoflow, PyTorch, Theano
- Knowledge of mainstream Deep Learning architectures (MLP, CNN, RNN, etc).
- Strong Python programming skills
- Working knowledge of Linux OS
- Eagerness to contribute in a team-oriented environment
- Demonstrated leadership abilities in school, civil or business organisations
- Ability to work creatively and analytically in a problem-solving environment
- Proven verbal and written communication skills in English (talks, presentations, publications, etc.)

Basic Qualifications

- Master's degree in computer science, engineering or mathematics fields
- Prior experience in artificial intelligence, machine learning, natural language processing, or advanced analytics

- Minimum 3 years of analytic experience Python with interest in artificial intelligence with working structured and unstructured data (SQL, Cassandra, MongoDB, Hive, etc.)
- · A track record of outstanding AI software development with Github (or similar) evidence
- Demonstrated abilities in designing large scale AI systems
- Demonstrated interes in Explainable AI and or relational learning
- Work experience with programming languages such as C, C++, Java, scripting languages (Perl/Python/Ruby) or similar
- Hands-on experience with data visualization, analytics tools/languages
- · Demonstrated teamwork and collaboration in professional settings
- Ability to establish credibility with clients and other team members