The AI Revolution

Doina Precup, PhD, Canada-CIFAR AI chair, McGill University & Mila

Associate Scientific Director of Healthy Brains for Healthy Lives CFREF program, McGill Research Team Lead, DeepMind Montreal Senior Member, American Association for Artificial Intelligence Senior Fellow, CIFAR Learning in Machines & Brains

The Industrial revolution:

Machines extending humans' MECHANICAL power

The AI revolution:

Machines extending humans'

- Digital economy => AI economy
- All sectors of economy

AI REVOLUTION

IDUSTRIAL REVOLUT

Why AI now?

- Cost per computation and memory unit is rapidly decreasing
- Amounts of data generated through new measuring devices (ChipSeq, MRI/fMRI, cameras etc) is exploding
- Eg. IBM estimated that 90% of all data available today was created in the last 2-3 years

Supervised Learning

Given: Input data and desired output Eg: Images and parts of interest

Goal: find a function that can be used for new inputs, and that matches the provided examples

Deep learning

Deep Learning Revolution: Image Recognition

ImageNet: 1M images 1000+ object categories

2015: Human-level performance

What's the secret? 15-yr old algorithms + GPUs + 10x more data

Application: Sensor processing on autonomous cars

Cf. Urtasun et al, Univ. Toronto & Uber

Unsupervised Learning

Given: Just data!

Eg: accelerometer information from a mobile phone

Goal: find "interesting" patterns Often there is no single correct answer

Example: Mode of transportation

Cf Bachir et al, 2018

(a) C1 and C2

(b) C3 and C4

(d) C7, C8 and C9

Reinforcement Learning

Reward: Food or shock

Reward: Positive and negative numbers

- Learning by trial-and-error
- •Reward is often delayed

Example: AlphaGo & AlphaZero

- Perceptions: state of the board
- Actions: legal moves
- Reward: +1 or -1 at the end of the game
- Trained by playing games against itself
- Invented new ways of playing which seem superior

Example: AlphaGo (DeepMind)

ARTICLE

doi:10.1038/nature16961

Mastering the game of Go with deep neural networks and tree search

David Silver¹*, Aja Huang¹*, Chris J. Maddison¹, Arthur Guez¹, Laurent Sifre¹, George van den Driessche¹, Julian Schrittwieser¹, Ioannis Antonoglou¹, Veda Panneershelvam¹, Marc Lanctot¹, Sander Dieleman¹, Dominik Grewe¹, John Nham², Nal Kalchbrenner¹, Ilya Sutskever², Timothy Lillicrap¹, Madeleine Leach¹, Koray Kavukcuoglu¹, Thore Graepel¹ & Demis Hassabis¹

Application: Route Planning

- Planning a route for a trip on map
 - Distance, traffic
 - Road network known
 - Shortest travel time, avoid congestion

- Planning a route for robot navigation
 - With or without map
 - Perception as input

Application: Traffic signal control

Background

Traffic lights control traffic flow at intersections.

Affects throughput, delay, waiting time, etc

Traditional methods

Fixed-time intervals for red-yellow-green

Traffic model-based methods

Road network

 Multiple intersections: control at one intersection has impact on neighboring intersections.

Application: Vehicle repositioning

Setup

- Grid world, system-wide repositioning
- Independent driver policy less coordination

Agent

- CNN-based, input: vehicles status, projected supply distribution, future demand
- Action: neighboring grid
- Reward: weighted sum of fulfillment pick-up distance
- Drivers execute actions in order.

Training

- Simulation based on NYC taxi data
- Double DQN

Results

Reduced unfulfilled requests by 20% compared to RHC.

Application: StreetLearn

Cf. Hadsell et al, 2018, 2019

Opportunities and Challenges

- AI methodology is becoming very mature
- But prediction vs causal mechanism is still a open problem
- Training in simulation vs deployment
- Safety / risk management need to be incorporated
- Ethical considerations need to be incorporated