Artificial Intelligence and Certification

George Romanski,

Chief Scientific and Technical Advisor Aircraft Computer Software

Date: May, 2019

Federal Aviation Administration

Challenges of AI/ML Certification for Avionics Systems

- Artificial Intelligence and Machine Learning approaches have enjoyed much success
- Can they be trusted in safety critical situations
- Deployment is pushing the boundaries of innovation
- Approval by authorities appears to be lagging
- New approaches are being explored

Al has existed for a while

- Expert System, Artificial Intelligence was a HOT-TOPIC in THE '80's
- They were mostly Inference Engines based on programming languages
 - LISP
 - PROLOG, etc.
- They were hard to program and limited by computing power

Artificial Neural Networks

- New paradigm evolved over last 10 years
- Incredible growth of computing power
- Huge volumes of data available cheaply
- New approaches mimicking operations of brains (sort of)

Computing power spurt

- Game computers demand more realism
 - Ray tracing are used to draw more realism into graphics
 - This requires huge multiply-add operations on arrays of data values
 - High speed required to repeat operations in video frame speeds
 - Co-processors developed to handle simple computations
 - Video Cards developed with multiple processor cores, or vector processing e.g. NVIDIA
 - Tighter memory/processor coupling
 - Instruction/Data cacheing

Data Availability

- Big Data through database scraping
 - Data storage became "cheap"
 - More transactions through higher throughput on Internet
 - Data stored "in the cloud"
- Systems can "learn" from historical data
- This was exploited by "deep pockets"
 - Amazon shopping cart suggestions
 - Google Search engines
 - Facebook Social-media linking

Automation based on Artificial Intelligence

There are many kinds of AI approaches, and many new ones are being invented

- Rule Based, Behavior trees, State machines
- Neural Networks
 - Unsupervised
 - Learning by Data clustering
 - Supervised
 - Labeled Data
 - Reinforcement Learning
 - Heuristic reward function to extrapolate information

prominent due to increase in computing resources

Learning types

• "Find hidden structure"

Learn series of actions

Forum MobiliT.AI, Montreal 2019

Introduction of Autonomy

- Makes it harder to ensure performance of intended functionality
- Operating conditions harder to quantify
 - Sensor degradation
 - Subsystem malfunctions
 - Operator errors
- Added complexity make interactions harder to constrain

Trust in Automation

- Current approach to Software:
 - Lots of experience over many years
 - Very conservative design and implementation
 - Established guidelines understood well
 - Prescriptive approach (everyone knows what to do)
 - Verification Completion criteria understood
- Certification of Autonomy hard
 - Hard to scale up
 - Data in ANNs is unstructured
 - When are we done with testing?

A Neuron and its connections

Building Blocks of a Brain

Simplified Representation

Forum MobiliT.AI, Montreal 2019

Artificial Neural Network (with Activation)

o1 = Activation (x1*wx11 + x2*wx21 + x3*wx31 + x4*wx41)

Forum MobiliT.AI, Montreal 2019

Activation Function - example

Forum MobiliT.AI, Montreal 2019

Reward function using Gradient Descent

Don't get stuck in the local minima

Forum MobiliT.AI, Montreal 2019

Verification of Artificial Neural Networks

- The algorithms are (typically) straight forward
 - Simple code repeated for all data nodes
 - Code can be verified using customary (DO-178) processes
 - Single set of data vectors could provide coverage over entire code – But!
- The Learned Weights used to perform the Input to Output transformation are hard to verify.
 - No direct correspondence to the expected behavior.
 - Computed by the learning process
- DO-178 does not support verification of an ANN

US Federal Aviation Regulations

- Parts 23 (General Aviation), Part 25 (Transport), Part 27 (Rotorcraft), Part 29 (Transport Category Rotorcraft)...
- "The equipment, systems, and installations must be designed and installed to ensure they perform their intended functions under all foreseeable operating conditions"

Gaining Approval

Existing Approach

Proposed Alternative Approach

Forum MobiliT.AI, Montreal 2019

Overarching Properties

- •What we think we want !
- Intended Behavior,
- •Requirements

Stakeholder Needs

How to show Product "owns" the properties

- Build Assurance Case
 - Communicates a line of reasoning which ties the ownership of the OPs to evidence
 - Should be a structured, compelling argument
- Many notations exist
 - Goal Structuring Notation (GSN)
 - Toulmin
 - Etc.
- Structured Text proposed
 - Can be manipulated by tools
 - Can be translated to graphical forms

Templates and Evidence Schemes

- Developing an approach to produce Assurance Case Templates
- Template Catalog
 - Will help Assurance case adoption
 - Lower cost of certification through reuse

Note!

Assurance Case Templates will help with Understanding the Argument

Verification evidence still required (e.g. Testing)

"OP" Positions are not fixed - yet

- Some
 - Looking to offer more flexibility for applicants
 - Use of Risk based process adjustments
- Other
 - Concerns with applicants having more flexibility:
 - Lack of approval uniformity
 - · Hard to educate auditors to reach consistent approval
 - Cannot reach legal approval obligations

Still a work in Progress

Deep Neural Networks

Learning process depends on reward heuristics – (varies with time)

- If learning is continues during operational use, then
 - May not know what to expect
 - Behavior is not uniform
 - Behavior is not under configuration control
 - · Cannot show absence of unintended behavior
 - Cannot perform accident investigation
- Learning should be disabled when complete
 - Resource use becomes constant
 - Compute time becomes more predictable (depending on activation trigger optimization)
- Network can be 'tuned' to balance between Resource use, Time and Precision

Bounding Behavior

- Use "Safety Nets" around non-deterministic part of system
- Multiple monitors possible (with voting?)
- Safe Reinforcement learning
 - "Shielding" reward function, teaches only safe actions

Compare Pilot and Artificial Neural Network

- Training required
- Learning through experience is ongoing
- Trusted by public

- Training required
- Learning switched OFF before deployment
- Trust not established yet

If we look inside at the Neurons and connections – we still cannot work out what they are "thinking"

Current Challenge:

how to ensure enough Pilots

how to establish Trust

Forum MobiliT.AI, Montreal 2019

Proposed uses

- Autonomous co-pilot
- UAS landing
 - Clear runway
 - Package delivery
- Sense and avoid
- Terrain recognition (follow pipeline)

• Algorithms with discontinuities

Examples of AI/ML in Aviation

- ACAS-Xu Detect and Avoid System
 - Developed by MIT / Stanford
 - Uses reLUPlex (ANN and Linear Programming)
 - Works well, but not certified (don't know how)
- Fuel measurement system
 - BF Goodrich
 - Works well, but not certified (don't know how)

Design Assurance Levels

- Tied to Risk through ARP-4761
 - Catastrophic Level A
 - Major Level B
 - Minor Level C
- No scientific Foundation (best practice approach)
 - How to tie this to AI?
 - It's an economic driving factor -
 - Otherwise just use DAL A.

Research Continues

- ReLUPIex example Simple activation function, Linear programming constraints (Simplex) ACAS-Xu
- Fuel Measurement example
- For object recognition ANNs may perform better than people – now!
- Automated verification techniques sometimes fail
- Avoiding latent bias (e.g. Wolves and huskies, Stop sign with post-it-note)
- How do we adjust "Leveling"? (DAL A, B, C, D)

Trust in Automation

- Current approach to Software:
 - Lots of experience over many years
 - Very conservative design and implementation
 - Established guidelines understood well
 - Prescriptive approach (everyone knows what to do)
 - Verification Completion criteria understood
- Makes Certification of Autonomy hard
 - Hard to scale up
 - Data in ANNs is unstructured
 - Research is underway! - When are we done with testing?

