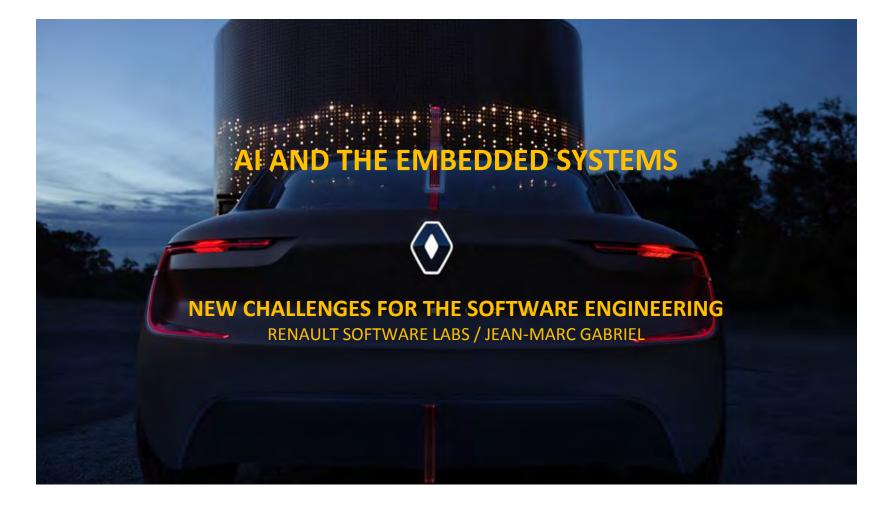
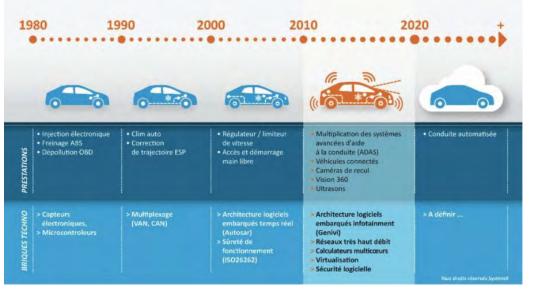
FORUM obilitation

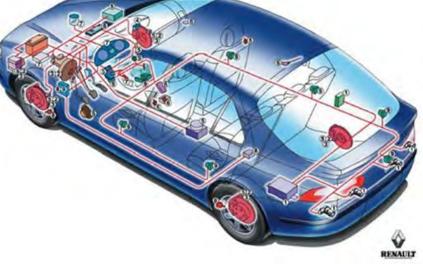


Embedded systems

Embedded systems :

- + Autonomous
- + Real time
- \approx Dedicated to a specific task
- \approx Integrate processor and memory
- Very limited resources (cost, energy, space)





Alde au parking
 Assistance au freinage d'urgence
 Assistance au freinage d'urgence
 Assistance au freinage
 Carminat navigation
 Esp (Eloctronic Stability Program)
 Odystine
 Odystine
 Régulateur-limiteur de vitosse
 Système de surveillance de la pression des pneus
 Volture sans clé

→ The automotive industry is a key actor for embedded innovations relying on AI technologies !

AI based services for the cars

On board services

Voice recognition
Recommender systems
...

ADAS/AD

Perception
 Trajectory planning
 Motion planner

Support services

Predictive maintenance
Fleet management
...

AI based services for the cars : Embedded ML

On board services

Voice recognition
Recommender systems
...

ADAS/AD

Perception
 Trajectory planning
 Motion planner

Support services

Predictive maintenance
Fleet management
...

Most of these services relies on Machine Learning :

- Neural Network (perception)
- Symbolic ML (predictive maintenance)
- Reinforcement Learning
- A Other AI fields can be involved (rules based systems, multi-agent systems, ...) but they are not considered here (no particular technical problems, no yet mature for services on production).

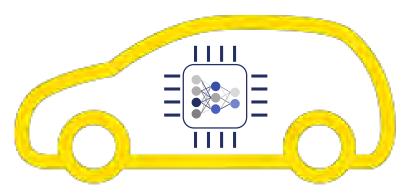
Many of them must be embedded for various reasons :

- Real time decision
- Cost of data transfer
- Network robustness not guarantee
- ▲ Edge computing will help but it is not yet ready at the industrial grade.

Non functional requirements

Energy Electricity consumption Thermal

Performance Inference time (\rightarrow real time)



« Certificability » Severity x Exposure x Controlability
 Data privacy (RGPD)

+ 🚯

Safety

Minimal defect rates Mode backup Redundancy on the whole chain

Cyber-security Data protection Protection against malicious code injection Robustness against attacks

Current focal point : inference time for video

Table 1: ConvNet models in the literature

ConvNet	Naming Convention in graphs	Top-5 accuracy (%)	Dataset	# Layers	Parameters	Model Size	
AlexNet	alexNet [42]	80.3	ImageNet	5 Conv + 3 FC	62 M	244 MB	1,5 Gflop
GoogleNet	googleNet [56]	90.85	ImageNet	57 Conv + 1 FC	6.9 M	54 MB	
Residual Net	resNet50 [32]	93.29	ImageNet	53 Conv + 1 FC	25 M	103 MB	
SqueezeNet	squeezeNet [36]	80.3	ImageNet	26 Conv	1.2 M	5 MB	
SqueezeNet with Deep Compression	sqCompressed [36]	80.3	ImageNet	26 Conv	1.2 M	675.8 KB	
SqueezeNet with Residual Connections	squeezeNetRes [36]	82.5	ImageNet	26 Conv	1.2 M	6.3 MB	
VGG	vgg- small [53]	86.9	ImageNet	5 Conv + 3 FC	102 M	393 MB	20 Gflops
MobileNet	mobileNet [34]	70.6	ImageNet	27 Conv	29 M	17 MB	
Places-CDNS-8s	Places-CDNS-8s [59]	86.8	ImageNet	8 Conv + 3 FC	60 M	241.6 MB	
Inception-BN	Inception-BN [37]	89.0	ImageNet	69 Conv + 1 FC	1.4 B	134.6 MB	
ALL-CNN-C	ALL-CNN-C [54]	90.92	CIFAR 10	9 Conv	1.3 M	5.5 MB	

Nvidia : ≈ 10 TFLOPS (perception with many cameras), 50 TFLOPS for the whole AD chain

- Processor and memory type
- Parallelism strategy
- Speech analysis relies more and more on CNN leading to networks holding more than 100M parameters.

consumption

VS

SOFTWARE NN framework NN libraries

DNN at the software level

Many approaches are proposed for reducing the NN complexity for inference

Quantization**

- ♦ Reduce the number of bits for representing the parameter weight (FP32/FP16 \rightarrow Int32 ... Int5)
- Very good accuracy loss/size reduction ratio but it depends on weight sharing

Weight sharing

- Gather (with clustering) similar weights and index the closest value
- Very good accuracy loss/size reduction ratio but it depends on quantization

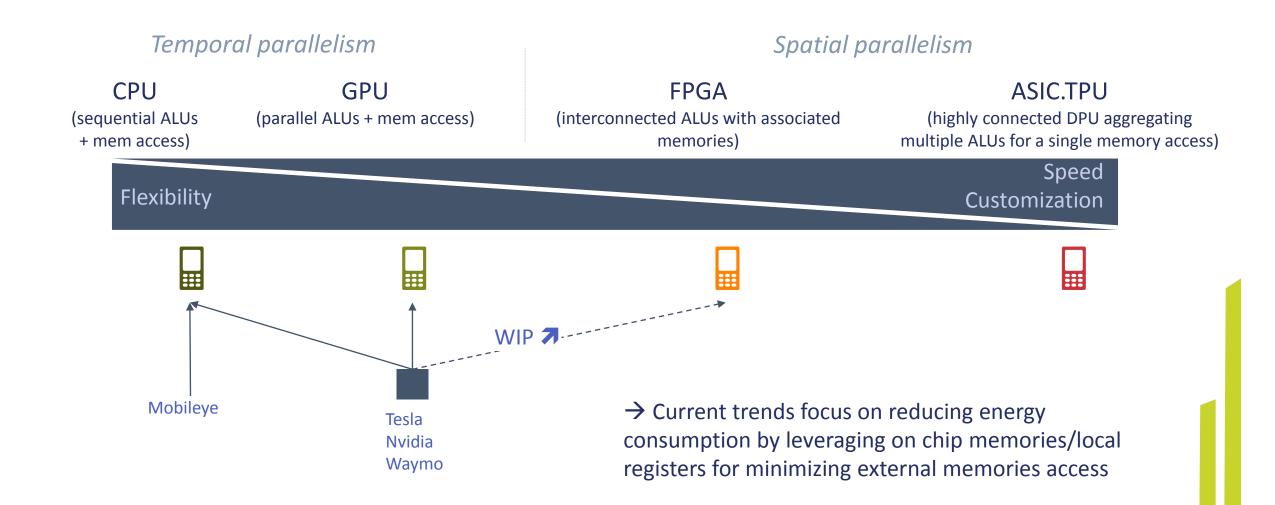
Network pruning

- Remove parameters (*fine grain tuning*) or group of parameters (*coarse-grained tuning*) by considering : low weight (directly or through *l1*, *l2* regularization), mutual information, remove filters and channels
- Very good accuracy loss/size reduction can be obtain (but the effort may be important) most often if specialized hardware are adapted (mainly for managing sparse layers)
- * Not sure a pruned neural network performs better than a dense network with the same « size »* !

Leaner architecture

- Reduce convolution on channels (MobileNet)
- ...

DNN at the hardware level



FPGA

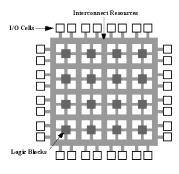
 « reconfigurable » logical array wich may provide an adhoc data flow adapted to a DNN shape

- requires much less power
- if well designed, it provides significant peformance gain
- quite expensive (for now)

Design :

- Enable irregular parallelism (for sparsity)
- Support custom data types (cf compact data types)
- Depends on the optimization at the soft. level
- Require the use some CNN-to-accelerator toolflows

High density of interconnectable logical gates with volatile memory



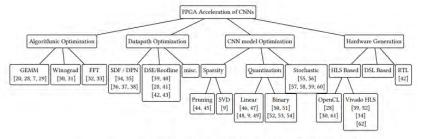


Figure 2: Main Approaches to Accelerate CNN inference on FPGAs

Support tools

Several frameworks are available for free :

Tensorflow

Caffe

_ Interoperables with ONNX Interoperables

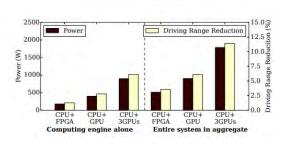
PyTorch

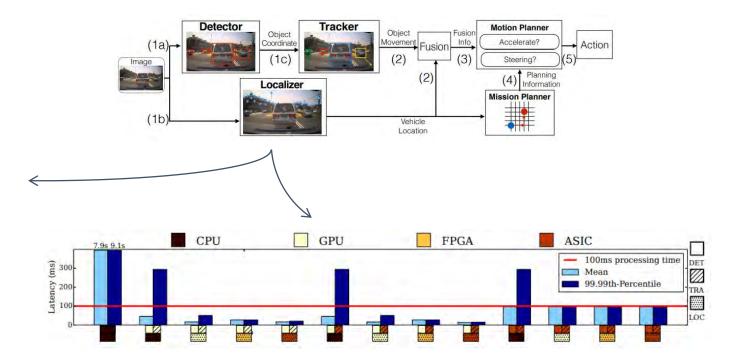
Several (Soft/HW) vendors propose additional libraries/tools for accelerating NN processing

- Nvidia with cuDNN and TensorRT
- Qualcomm with Neural Processing SDK
- Intel with Math Kernel Libraries for its CPU based chips
- Google with Tensorflow extended and Tensorflow Lite
- Facebook with NNPack and QNNPack

Design concerns : integration of differents NN

The Architectural Implications of Autonomous Driving: Constraints and Acceleration [Lin & al., 2018]

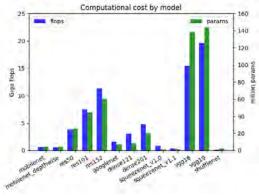




+ Safety constraints lead to integrate several NNs for the same service (eg. perception on various sensors)

Design concerns : arch. perf. not predictable

No direct relationship between architecture and inference time



JoliBrain's DeepDetect platform evaluation

Table 2: Popular CNN models with their computational workload. Accuracy measured on single-crops of ImageNet test-set.

Model	AlexNet [14]	GoogleNet [18]	VGG16 [6]	VGG19 [6]	ResNet50 [19]	ResNet101 [19]	ResNet-152 [19]
Top1 err	42.9 %	31.3 %	28.1 %	27.3 %	24.7%	23.6% %	23.0%
Top5 err	19.80 %	10.07 %	9.90 %	9.00 %	7.8 %	7.1 %	6.7 %
conv layers	5	57	13	16	53	104	155
conv workload (MACs)	666 M	1.58 G	15.3 G	19.5 G	3.86 G	7.57 G	11.3 G
conv parameters	2.33 M	5.97 M	14.7 M	20 M	23.5 M	42.4 M	58 M
Activation layers	ReLU						
pool layers	3	14	5	5	2	2	2
FC layers	3	1	3	3	1	1	1
FC workload (MACs)	58.6 M	1.02 M	124 M	124 M	2.05 M	2.05 M	2.05 M
FC parametrs	58.6 M	1.02 M	124 M	124 M	2.05 M	2.05 M	2.05 M
Total workload (MACs)	724 M	1.58 G	15.5 G	19.6 G	3.86 G	7.57 G	11.3 G
Total parameters	61 M	6.99 M	138 M	144 M	25.5 M	44.4 M	60 M

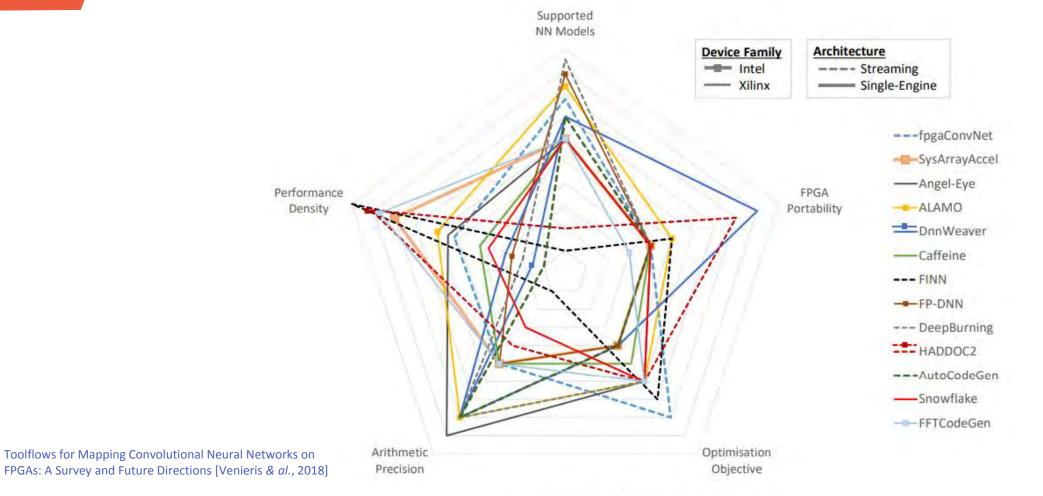
Accelerating CNN inference on FPGAs: A Survey [Abdelouahab & al., 2018]

Table 1: Execution time of convolutional layers with 3×3 kernel size, stride 1, same padding, and 224×224 input image size on the Nexus 5 phone.

	in_channel	out_channel	FLOPs	Time (ms)
CNN1	8	32	452.4 M	114.9
CNN2	32	8	452.4 M	300.2
CNN3	66	32	3732.3 M	908.3
CNN4	43	64	4863.3 M	751.7

FastDeepIoT: Towards Understanding and Optimizing Neural Network Execution Time on Mobile and Embedded Devices [Yao & al., 2018]

Design concerns : FPGA mapping tools rely on various strategies



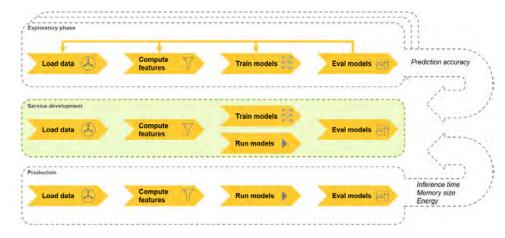
Overview of toolflow characteristics

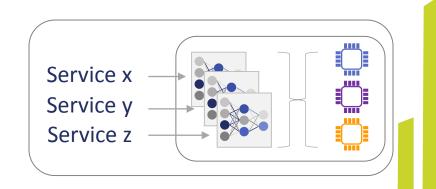
New challenges for soft. engineering

SE objective : fast iterations for fast and secured moves from POC to production

The basics :

- DevOps/Conf management/Automated testing
- Use of ONNX compliant frameworks
- Set up a dashboard tracking metrics evolution
- Platforming : DYBY (« Do Your Bench Yourself ») for fast exploration of many configurations
 - Make clear production requirements (*specifications* ?) for all ML based components
 - Establish and maintain a reference baseline
 - Negociate new vendors relationship (upstream assessment)
 - Simulation is also an option
 - Accept the cost and the latency !





Two optimization cycles to integrate

Integrate means having the ability to take decisions for solving one concern with a clear idea of their impact on other concerns.

… instead of having to check at each development step that all concerns are adressed

