

Presentation titleAI AND THE EMBEDDED SYSTEMS

NEW CHALLENGES FOR THE SOFTWARE ENGINEERING
RENAULT SOFTWARE LABS / JEAN-MARC GABRIEL

Embedded systems

Embedded systems :

+ Autonomous
+ Real time
 Dedicated to a specific task
 Integrate processor and memory
- Very limited resources (cost, energy, space)

 The automotive industry is a key actor for
embedded innovations relying on AI technologies !

http://electroniqueveynes.free.fr/spip.php?article72
http://electroniqueveynes.free.fr/spip.php?article72

AI based services for the cars

On board services
Voice recognition

Recommender systems

…

 ADAS/AD
Perception

Trajectory planning

Motion planner

 Support services
Predictive maintenance

Fleet management

…

AI based services for the cars : Embedded ML

Most of these services relies on Machine Learning :
- Neural Network (perception)
- Symbolic ML (predictive maintenance)
- Reinforcement Learning

Other AI fields can be involved (rules based systems,
multi-agent systems, …) but they are not considered here
(no particular technical problems, no yet mature for
services on production).

Many of them must be embedded for various reasons :
- Real time decision
- Cost of data transfer
- Network robustness not guarantee

Edge computing will help but it is not yet ready at the
industrial grade.

⚠

⚠

On board services
Voice recognition

Recommender systems

…

 ADAS/AD
Perception

Trajectory planning

Motion planner

 Support services
Predictive maintenance

Fleet management

…

Non functional requirements

Safety
Minimal defect rates
Mode backup
Redundancy on the whole chain

Cyber-security
Data protection
Protection against malicious code injection
Robustness against attacks

Performance
Inference time (real time)

Energy
Electricity consumption
Thermal

Maintenabilité
Non regression
Over The Air update

« Certificability »
Severity x Exposure x Controlability
Data privacy (RGPD) + 💰

Current focal point : inference time for video

SOFTWARE
• NN framework
• NN libraries

HARDWARE
• Processor and memory type
• Parallelism strategy

EMBEDDED SYSTEM
 Computation

speed
 Memory access

 Energy
consumption

20 Gflops

Speech analysis relies more and more on CNN
leading to networks holding more than 100M
parameters.

⚠

Nvidia : 10 TFLOPS
(perception with many
cameras), 50 TFLOPS for the
whole AD chain

1,5 Gflops

vs

DNN at the software level

Many approaches are proposed for reducing the NN complexity for inference
 Quantization**

 Reduce the number of bits for representing the parameter weight (FP32/FP16 Int32 … Int5)

Very good accuracy loss/size reduction ratio but it depends on weight sharing

Weight sharing
Gather (with clustering) similar weights and index the closest value

Very good accuracy loss/size reduction ratio but it depends on quantization

 Network pruning
 Remove parameters (fine grain tuning) or group of parameters (coarse-grained tuning) by considering :

low weight (directly or through l1, l2 regularization), mutual information, remove filters and channels

Very good accuracy loss/size reduction can be obtain (but the effort may be important) most often if
specialized hardware are adapted (mainly for managing sparse layers)

Not sure a pruned neural network performs better than a dense network with the same « size »* !

 Leaner architecture
- Reduce convolution on channels (MobileNet)

- …

R
ed

u
ce

p
re

ci
si

o
n

o
f

o
p

er
a

ti
o

n
s

R
ed

u
ce

a
m

o
u

n
t

o
f

o
p

er
a

ti
o

n
s

DNN at the hardware level

CPU
(sequential ALUs
+ mem access)

GPU
(parallel ALUs + mem access)

FPGA
(interconnected ALUs with associated

memories)

ASIC.TPU
(highly connected DPU aggregating

multiple ALUs for a single memory access)

Flexibility

📱 📱📱📱

Mobileye
Tesla
Nvidia
Waymo

WIP

Temporal parallelism Spatial parallelism

 Current trends focus on reducing energy
consumption by leveraging on chip memories/local
registers for minimizing external memories access

Speed
Customization

FPGA
High density of interconnectable logical gates with volatile memory

 « reconfigurable » logical array wich may provide an
adhoc data flow adapted to a DNN shape
 requires much less power

 if well designed, it provides significant peformance gain

 quite expensive (for now)

 Design :

 Enable irregular parallelism (for sparsity)

 Support custom data types (cf compact data types)

 Depends on the optimization at the soft. level

 Require the use some CNN-to-accelerator toolflows

Support tools

Interoperables with ONNX

Wide benchmarking perimeter

DawnBench
DeepBench

MLPerf

Some criteria
are missing
(power for instance)

 Several frameworks are available for free :
 Tensorflow

 Caffe

 PyTorch

 Several (Soft/HW) vendors propose additional libraries/tools for accelerating NN
processing
 Nvidia with cuDNN and TensorRT

 Qualcomm with Neural Processing SDK

 Intel with Math Kernel Libraries for its CPU based chips

 Google with Tensorflow extended and Tensorflow Lite

 Facebook with NNPack and QNNPack

https://dawn.cs.stanford.edu/benchmark/
DeepBench https:/github.com/baidu-research/DeepBench
https://mlperf.org/

Design concerns : integration of differents NN

The Architectural Implications of Autonomous Driving:
Constraints and Acceleration [Lin & al., 2018]

+ Safety constraints lead to integrate several NNs for the same service (eg. perception on various sensors)

Design concerns : arch. perf. not predictable

 No direct relationship between architecture and inference time

FastDeepIoT: Towards Understanding and Optimizing
Neural Network Execution Time on Mobile and
Embedded Devices [Yao & al., 2018]

JoliBrain’s DeepDetect platform evaluation

Accelerating CNN inference on FPGAs: A Survey
[Abdelouahab & al., 2018]

Design concerns : FPGA mapping tools rely on
various strategies

Toolflows for Mapping Convolutional Neural Networks on
FPGAs: A Survey and Future Directions [Venieris & al., 2018]

New challenges for soft. engineering

Service x

Service y
Service z

 SE objective : fast iterations for fast and secured moves
from POC to production

 The basics :
 DevOps/Conf management/Automated testing

 Use of ONNX compliant frameworks
 Set up a dashboard tracking metrics evolution

 Platforming : DYBY (« Do Your Bench Yourself ») for fast
exploration of many configurations
Make clear production requirements (specifications ?) for all ML

based components
 Establish and maintain a reference baseline
 Negociate new vendors relationship (upstream assessment)
 Simulation is also an option
 Accept the cost and the latency !

Model Z

Two optimization cycles to integrate

 Integrate means having the ability to take decisions for solving one concern with a
clear idea of their impact on other concerns.

 … instead of having to check at each development step that all concerns are adressed

Accuracy optimization

Performance optimization

Data capture
and loading

Feature engineering

Model training

Model accuracy evaluation

Accuracy loss/size reduction evaluation

Architecture optimization

Model re-training

Model X

Model Y No idea of HW constraints/possibilities
 continuous checks

Some hints about NN resource needs
 occasional checks

A - configurable and consistent - model establishes
the boundaries of a NN wrt a given HW configuration

 sequential optimization phases

MERCI !

